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Over the past decade, engineering principles have been used

to explain why a mechanical load, intraocular pressure, can

lead to the development of glaucomatous optic neuropathy.

This has led to the ‘biomechanical theory’ of glaucoma, which

posits that the behavior of optic nerve head connective tissues

(specifically within the peripapillary sclera and lamina cribrosa)

in response to intraocular pressure (regardless of its

magnitude) can directly and indirectly influence the physiology

and pathophysiology of the optic nerve head. Given that the

biomechanics of the sclera and lamina cribrosa probably

influence retinal ganglion cell loss in glaucoma, the idea that

altering biomechanical behavior might be protective against

glaucoma is an appealing notion. There is some evidence to

suggest that stiffening the peripapillary sclera may be

protective against the development of glaucoma in an animal

model. It is technically possible to stiffen the sclera in vivo using

collagen cross-linking techniques already applied in vivo to the

cornea in the treatment of keratoconus. It has yet to be

established whether scleral cross-linking is safe in humans and

that it confers anything more than a theoretical advantage in

terms of reducing the risk of glaucomatous damage.
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Introduction
Although the definition of the glaucomas – a group of

conditions in which there is a progressive optic neuro-

pathy with development of associated characteristic

visual field deficits – does not include elevated intraocular

pressure (IOP), it is clear that elevated IOP is a key risk

factor in the development of glaucoma. Furthermore,
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there is evidence to suggest that lowering of IOP may

retard glaucomatous conversion in ocular hypertensives

and glaucomatous progression in both high-tension and

normal-tension forms of open angle glaucoma [1–3].

Given these observations, it is reasonable to infer that

IOP, regardless of its magnitude, may influence the de-

velopment of glaucomatous optic neuropathy.

How does IOP – either directly or indirectly – influence

damage to the retinal ganglion cell (RGC) axons and

therefore the development of glaucoma? There is much

evidence to suggest that a key site of injury to the RGC is

at the level of the lamina cribrosa (LC) within the optic

nerve head (ONH) [4–7]. From a mechanical perspective,

the ONH is essentially a ‘weak spot’ as it is a disconti-

nuity within the otherwise robust corneo-scleral coat. The

LC, and adjacent peripapillary sclera serve as the chief

load-bearing connective tissue structures of the ONH,

deriving their ‘strength’ from the constituent collagen.

The LC is a complex three-dimensional structure com-

prising of a series of interconnected connective tissue

beams and spaces, bridging the ‘gap’ within the termin-

ation of the peripapillary sclera. The ‘pores’ or spaces

within the LC architecture allow the passage of RGC

axon bundles as they leave the globe to continue within

the retrobulbar optic nerve. It is within the passage

through the LC that RGC axons are presumed to be

vulnerable to IOP-related insult in glaucoma – perhaps

transmitted through direct damage to the supporting

connective tissues with interruption of axoplasmic flow

and disruption of nutrient supply to the axons.

Within the last 15 years, the principles of biomechanics

have been applied to the study of the relationship between

the ONH and IOP [8–10]. Biomechanics refers to the

application of mechanical principles to biological systems.

The ONH may be treated as a biomechanical structure,

with a complex 3D load-bearing connective tissue archi-

tecture (the LC) subjected to stress (a measure of internal

force per unit area) induced by IOP. By studying the

response of ONH connective tissues to IOP, we may

elucidate: (1) why certain eyes are predisposed to devel-

oping glaucomatous optic neuropathy with high IOP and

others are not; (2) why certain eyes develop glaucoma with

a statistically normal IOP and (3) how ageing may influence

the development of glaucoma through alterations in con-

nective tissue biomechanical behavior.

In this review, the biomechanical paradigm of glaucoma

will be explained as well as the key developments over the
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past 5 years that have increased our understanding of how

the connective tissues of the ONH respond to biomecha-

nical insult. We will speculate upon methods that may be

used to alter the biomechanical behavior of the ONH in

order to prevent or slow the development of glaucoma.

The biomechanical theory of glaucoma
The biomechanical theory of glaucoma proposes that

ONH biomechanics may explain how IOP-induced stress

and strain (a measure of tissue deformation) of the load

bearing tissues of the ONH (sclera and LC) influence

their physiology and pathophysiology, and of the adjunc-

tive tissues (astrocytes, glia, endothelial cells, vascular

pericytes and their basement membranes) and the RGC

axons [8,11,12]. ONH biomechanics is the ‘link’ by which

IOP can influence such apparently non-IOP factors such

as ischemia, inflammation, autoimmunity, astrocytic and
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glial cell biology. The interplay between IOP, biomecha-

nics and retinal ganglion cell loss is outlined in schematic

form in Figure 1.

Multiple biomechanical factors are likely to influence an

individual ONH’s susceptibility to glaucoma, including,

but not limited to: (1) the magnitude and variation of IOP;

(2) collagen fiber orientation in the peripapillary sclera – a

highly-aligned collagen fiber ring may protect the ONH

against IOP-related insult [13,14]; (3) LC and scleral

stiffness – a stiff sclera may shield the ONH from

IOP-related insult; 4) LC and scleral geometry – a thick

lamina may protect against mechanical damage [15�].
IOP-induced deformations of connective tissues, and

thus biomechanics, can also affect the volume flow and

perfusion pressure of blood within the laminar capillaries,

which will in turn influence the diffusion of nutrients to
 Factors

ogy Biomechanical
Properties
S

tr
es

s

Strain

Tangent
Modulus

P
o

ten
tial P

ro
tective R

esp
o

n
se:

A
lteration through E

xtracellular M
atrix R

em
odeling 

= Altered Biomechanical Response

sduction
Axoplasmic Flow

And Nutrient Supply
Interruption

th

laucoma)

Current Opinion in Pharmacology

nics may result in retinal ganglion cell loss in glaucoma.

mical signals at a cellular level.

www.sciencedirect.com



Altering biomechanics as glaucoma therapy Strouthidis and Girard 85
astrocytes. Finally there may be features within the RGC

itself that will result in an increased susceptibility to

apoptosis in response to localised distress [16].

Measuring the anatomical response to acute
changes in IOP
A first essential process in the study of ONH biomecha-

nics has been to examine the response of ONH tissues in

response to manipulations in IOP. Several investigators

have studied the ‘compliance’ (the inverse of stiffness) of

the normal ONH in response to an acute elevation of IOP

using techniques of increasing complexity. These in-

clude: X-ray photography of cadaveric non-human

primate eyes with fine platinum wires inserted into the

peripapillary sclera and optic disc [17], laser doppler

velocimetry of normal human autopsy eyes [18], conven-

tional histology of human eyes [19], 2D [20,21], and 3D

histomorphometric reconstructions of post mortem nor-

mal monkey eyes [22]. Various imaging modalities have

been used in vivo in normal monkey eyes [23,24].

Numerical models have also been used [25,26]. These

reports were all consistent (to a greater or lesser degree) in

finding a posterior movement of the optic disc surface in

response to an acute elevation of IOP.

Post mortem studies, performed both in human and

monkey eyes, have indicated that the LC and scleral

canal wall deform after acute IOP elevation [19–21,27].

The effect of acute IOP elevation upon monkey ONH

connective tissues was initially explored using 2D his-

tomorphometry by comparing a series of eyes perfusion

fixed at IOP 10 mmHg with eyes that had been immer-

sion fixed at IOP 0 mmHg [21]. In that study, the lamina

was found to be thinner and more anterior, and the scleral

canal diameter larger in the IOP 10 mmHg eyes. These

observations suggested that, with acute IOP elevations at

a low native IOP, the scleral canal expands resulting in a

tauter, thinner, more anteriorly placed lamina. Sub-

sequently, 2D histomorphometry was performed in nor-

mal young adult monkeys perfusion fixed at 10 mmHg in

one eye and 30 or 45 mmHg in the fellow eye [20]. In that

study, a posterior laminar deformation of 10–23 mm in the

high IOP eyes compared to their contralateral fellow eyes

was demonstrated. Most recently, ONH connective tis-

sue deformation has been characterised in 3D histomor-

phometric ONH reconstructions of eyes perfusion fixed

after acute IOP elevation to 30 or 45 mmHg compared to

10 mmHg in their fellow eyes [22]. Minimal to modest

regional laminar thinning and posterior bowing of the

peripapillary sclera, thinning and expansion of the scleral

canal was observed in most of the high IOP eyes. The

minimal posterior laminar displacement in response to

acute IOP elevation was also noted in a series of in vivo
spectral domain OCT imaging studies conducted both in

monkeys and in humans, although scleral canal expan-

sion was not measured [28,29]. Modeling has demon-

strated that the LC is likely to be subject to significant
www.sciencedirect.com 
increases in stress and strain, even in the absence of

posterior deformation, because of the transfer of tensile

stretch caused by the expansion of the scleral canal

[26,30,31].

The effect of chronic IOP in the development
of glaucomatous optic neuropathy
Given that only minimal posterior laminar displacement

has mostly been observed following acute IOP elevations,

it is therefore likely that the characteristic ‘cupping’

identified in glaucomatous optic neuropathy follows on

from connective tissue and extracellular matrix remodel-

ing in response to a chronic IOP insult (whether elevated

or within normal range). In 3D histomorphometric studies

of monkey eyes with early onset experimental glaucoma,

thickening and posterior bowing of the LC was detected

[32–34]. Furthermore, the proportion of horizontally

orientated laminar beams was found to increase, leading

to a suggestion that retrolaminar septal beams become

‘recruited’ into the connective tissue LC in response to

chronic IOP elevation [32]. An alternative or additional

hypothesis, supported by findings in normal human eyes

[35], is that there is gradual posterior migration of the

laminar insertion such that it inserts into the pia. It is

expected that the astrocytes and lamina cribrosa cells

mediate the extracellular remodeling of the LC in

response to chronic IOP [36].

The role of sclera
The peripapillary sclera appears to exert a large influ-

ence over the biomechanics of the ONH; as stated

earlier, the circumferential IOP-induced ‘hoop stress’

is transferred to the LC via the sclera and scleral canal

expansion will drive some of the strains experienced

within the LC. In vivo studies conducted in normal

subjects and subjects with glaucoma have estimated

that ocular rigidity (a crude measure of scleral stiffness)

increases with the development of glaucoma [37]. These

findings support ex vivo work conducted in the monkey

eye that suggests that scleral stiffness increases with

both ageing and with moderate elevations in IOP,

although the latter may be preceded by a period of

scleral hypercompliance [38,39��]. A recent inflation

study of enucleated normal and glaucomatous human

eyes found that glaucomatous eyes had a stiffer mer-

idional strain response in the peripapillary region than in

normal eyes, although it is unclear whether this charac-

teristic represents a consequence of, or a predisposition

towards, the development of glaucoma [40�]. It is

possible that the sclera may stiffen and does so as a

protective mechanism against an increase in IOP

through mechanotransduction (the cellular ‘conversion’

of mechanical stumuli into biochemical responses) of

scleral fibroblasts and extracellular matrix remodeling. If

this were the case, such a response could act to slow

glaucomatous progression in eyes with higher IOPs and/

or more compliant scleral shells at baseline.
Current Opinion in Pharmacology 2013, 13:83–89
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There is, in fact, evidence to suggest that a stiffer sclera

may be protective against the development of glaucoma,

at least in the mouse eye [41��]. Mice with a mutation to

collagen 8 (Aca23 mice), which have longer and wider

eyes than wild type mice, were found to develop pro-

portionally less globe enlargement and significantly less

RGC loss than wild type mice with the onset of exper-

imentally induced glaucoma. It is tempting, if not unrea-

sonable, to assume that the difference in susceptibility to

experimental glaucoma may be due to alterations in

scleral biomechanical behavior.

Monkey eyes with initially stiff or thick sclera have been

shown to be less prone to biomechanical changes in

response to chronic IOP elevation [39��], which suggests

that stiff eyes have a lower sensitivity to IOP. The notion

that a stiff scleral shell may be an advantage for patients

with glaucoma appears to be paradoxical when one con-

siders that the sclera stiffens with age [38] and suscepti-

bility to glaucoma increases with age [42]. To reconcile

these contradictory observations, it should be noted that

collagen fibers become more brittle with age [43]; it is

therefore possible that scleral stiffening with age is a

‘suboptimal’ mechanism resulting in a biomechanically

unstable ONH.

Altering biomechanical behavior as potential
therapy?
Having posited that the biomechanical behavior of ONH

connective tissues influences the pathophysiology of

RGC loss in glaucoma, a natural extension might be to

consider whether manipulating ONH biomechanics

might serve as a potential therapeutic avenue in glau-

coma. It is certainly technically possible to ‘stiffen’ the
Figure 2
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sclera and this has been mooted as a potential treatment

for progressive myopia. This has been achieved in vivo in

human subjects by juxtascleral injection of a liquid poly-

mer ‘strengthening’ agent and by ‘scleroplastic’ surgery

whereby donor scleral strips or other biomaterials are

sutured to the sclera to increase its tensile strength

[44]. Although the proof of concept (in other words, some

reduction in the rate of axial lengthening) has been

demonstrated using posterior polar scleral buckling tech-

niques [45], high complication rates have also been

reported with other scleroplastic surgical techniques

[46]. As such these techniques have not yet been widely

adopted for the treatment of progressive myopia.

In the past decade, corneal cross-linking has been intro-

duced as an in vivo method that stiffens the cornea and

retards the progression of keratoconus [47]. This is

achieved by photo-polymerisation to induce increased

cross-linking between collagen fibrils leading to a stiffer

fiber network. In clinical practice, topical riboflavin is

used as the photosensitizing agent, with UVA illumina-

tion acting as the photo-stimulus. A number of investi-

gators have demonstrated that the same cross-linking

technique may increase scleral stiffness both ex vivo in

human and porcine eyes [48,49] and in vivo using rabbit

eyes [50], with a sustained effect for up to 8 months in the

latter. Unfortunately, this technique was also found to be

highly cytotoxic to the outer retina of the rabbit eye and

this was presumably related to the dosing of UVA [50]. An

alternative in vivo chemical cross-linking method using

glyceraldehyde was found to have a similar biomechanical

effect on rabbit sclera, although without any observed

retinal toxicity [51]. There is, however, some evidence to

suggest that increasing scleral cross-linking may result in
the Human ONH In Vivo
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greater scleral permeability that theoretically could lead

to unwanted sequelae [52]. Scleral cross-linking has not

yet been applied to an animal model of glaucoma.

It may be that a ‘safe’ technique that stiffens the sclera

might protect against glaucoma by limiting IOP-induced

strain in the ONH tissues, as predicted by computational

models [30,31]. However, at the time of writing, one

cannot yet be certain whether stiffening of the sclera

(or indeed the LC) will be protective in glaucoma; it is

possible that in some individuals the effect may be

harmful and in effect an increasing of ONH compliance

may be therapeutically advantageous. Our understanding

of the biomechanical characteristics that predispose clini-

cally to the development of glaucoma (and perhaps might

be modified in a therapeutic approach) will improve as in
vivo biomechanical testing of the ONH begins to become

possible using high-resolution spectral domain OCT

technology (Figure 2) to capture IOP-induced defor-

mations of the sclera and LC.

Conclusions
The biomechanical behavior of the connective tissues of

the optic nerve head – specifically the lamina cribrosa and

peripapillary sclera – probably influences the physiology

and pathophysiology of the optic nerve head. The bio-

mechanical theory of glaucoma may help to explain how

certain eyes are predisposed to the development of glau-

comatous optic neuropathy either at high IOP or at

normal levels of IOP, and some eyes are not. Further-

more, age-related changes in biomechanical behavior may

help to explain the increasing predisposition to glaucoma

with ageing. Given the likely role of scleral and lamina

cribrosa biomechanics, an ability to manipulate their

biomechanical behavior may serve as a potential thera-

peutic target. It is already technically possible to

strengthen and stiffen the sclera both ex vivo and in vivo
in animals using collagen cross-linking techniques. Whilst

these undoubtedly have the potential to stiffen the sclera,

these techniques are not yet known to be safe and there is

no proof that they will be of benefit in glaucoma. It is

possible that scleral stiffening may not be advantageous

in all individuals with, or at risk of, glaucoma. Our un-

derstanding of optic nerve head biomechanics in vivo will

need to increase so that we can appreciate what charac-

teristics predispose to glaucomatous damage; only then

can we begin to design appropriate biomechanical modi-

fication therapies.
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